UDC 343.98
Introduction. Nowadays, crimes in the field of computer information are both pervasive and multifaceted. This is largely due to a broad spectrum of high-tech tools and methods of committing criminal acts used by criminals. Current legal tools, mechanisms and investigation techniques often fall short in adapting to the fast evolution and transformation of the crimes. To develop the most effective investigation techniques, it is essential to devise a method for analysing the circumstances of a criminal act and systematising information about it. Given its connection to digital data, this particular type of crime may potentially lead to the formation of a new unification system of investigation process: assigning unique codes to criminal acts, thereby ensuring the clear identification of both the currently pervasive and the recently emergent means and methods of committing criminal acts, encompassing their entire spectrum. Methods. In summarising and analysing the empirical material within the framework of the study, general scientific methods of cognition (description, generalisation and comparison) were used, as well as a set of general scientific and private scientific methods (analysis, synthesis, modelling, formalisation, description, generalisation, comparison, classification, etc.). The results. A codification system of crimes in the field of computer information is proposed, the use of which can become the basis for the formation of effective investigation techniques of these crimes in the context of the constant evolution of methods of committing criminal acts. This approach will contribute to the development of new and improved technical-criminalistic tools based on artificial intelligence technologies and big data analysis methods, acting as a link between the legal and technical aspects of the investigation.
codification of crimes, computer crimes, cybercrime, algorithmisation of investigation, unification of investigation, technical and criminalistic tools
1. Golovin A. Yu. Bazovye kriminalisticheskie klassifikacii prestupleniy // Izvestiya Tul'skogo gosudarstvennogo universiteta. Ekonomicheskie i yuridicheskie nauki. 2013. № 2-2. S. 31–40.
2. Rossinskaya E. R. Teoriya informacionno-komp'yuternogo obespecheniya sudebno-ekspertnoy deyatel'nosti kak novaya chastnaya teoriya sudebnoy ekspertologii // Vestnik Universiteta imeni O. E. Kutafina. 2022. № 2 (90). S. 27–40. https://doi.org/10.17803/2311-5998.2022.90.2.027-040
3. Rossinskaya E. R. K voprosu ob innovacionnom razvitii kriminalisticheskoy nauki v epohu cifrovizacii // Yuridicheskiy vestnik Samarskogo universiteta. 2019. T. 5, № 4. S. 144–151. https://doi.org/10.18287/2542- 047X-2019-5-4-144-151
4. Mandal S. Cybercrime Classification: A Victimology-Based Approach // International Conference on Cyber Warfare and Security. 2024. Vol. 19. No 1. P. 156–167. https://doi.org/10.34190/iccws.19.1.2199
5. Owen T. Codifying and Applying the Genetic-Social Framework to Cybercrime and Cyber Terrorism // Cybercrime and Cyber Terrorism: Palgrave Macmillan, Cham, 2025. P. 107–181. https://doi.org/10.1007/978-3-031-87853-4_6
6. Al-Sada B., Sadighian A., Oligeri G. Mitre Att&ck: State of the art and way forward // ACM Computing Surveys. 2024. Vol. 57. No 1. P. 1–37. https://doi.org/10.1145/3687300
7. Branescu I., Grigorescu O., Dascalu M. Automated mapping of common vulnerabilities and exposures to mitre att&ck tactics // Information. 2024. Vol. 15. No 4. P. 214. https://doi.org/10.3390/info15040214
8. Rossinskaya E. R., Semikalenova A. I. Informacionno-komp'yuternye kriminalisticheskie modeli komp'yuternyh prestupleniy kak elementy kriminalisticheskih metodik (na primere kibershantazha) // Vestnik Tomskogo gosudarstvennogo universiteta. 2021. № 42. S. 68–80. https://doi.org/10.17223/22253513/42/5
9. Eksarhopulo A. A., Makarenko I. A., Zaynullin R. I. Kriminalistika. Teoreticheskiy kurs : monografiya. Ufa : NII PPG, 2022. 649 s.
10. Jaouhari S., Tamani N., Jacob R. Improving ML-based Solutions for Linking of CVE to Mitre Att&ck Techniques / 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), Osaka, Japan. 2024. P. 2442–2447. https: //doi.org/https://doi.org/10.1109/COMPSAC61105.2024.00392
11. Chamkar S. A., Maleh Y., Gherabi N. Security Operations Centers: Use Case Best Practices, Coverage, and Gap Analysis Based on Mitre Adversarial Tactics, Techniques, and Common Knowledge // Journal of Cybersecurity and Privacy. 2024. Vol. 4. No 4. P. 777–793. https://doi.org/10.3390/jcp4040036
12. Hargreaves C., Beek H., Casey E. Solve-it: A proposed digital forensic knowledge base inspired by Mitre Att&ck // Forensic Science International: Digital Investigation. 2025. Vol. 52. P. 301864. https://doi.org/10.1016/j.fsidi. 2025.301864
13. Verevkin S. A. Fedorchenko E. V. Sravnitel'nyy analiz baz dannyh Mitre Att&ck i Capec // Izvestiya Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki. 2023. № 4. S. 29–39. https://doi.org/10.24412/2071-6168-2023-4-29-39
14. Akbar K. A. [et al.]. Knowledge mining in cybersecurity: From attack to defense // Sural Sh., Lu H. (eds.) Data and Applications Security and Privacy XXXVI. 36th Annual IFIP WG 11.3 Conference, DBSec 2022, Newark, NJ, USA, July 18 20, 2022. P. 110–122. https://doi.org/10.1007/978-3-031-10684-2_7
15. Seredkin S. P. Modelirovanie ugroz bezopasnosti informacii na osnove banka ugroz FSTEK Rossii// Informacionnye tehnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami : [elektronnyy zhurnal]. 2022. № 1 (13). S. 43–54. URL: http://ismm-irgups.ru/toma/113-2022. https://doi.org/10.26731/2658-3704.2022.1(13).43-54
16. Golovin A. Yu. Kriminalisticheskaya sistematika : monografiya. Moskva : LeksEst, 2002. 305 s.




