employee from 01.01.2022 until now
Moscow, Moscow, Russian Federation
UDC 343.9
Introduction. The article is dedicated to the actual problem of remote fraud in the context of digital transformation of society, with a particular focus on the use of artificial intelligence (AI) by criminals. Methods. The author carried out a comprehensive victimological analysis of modern fraud schemes based on deep learning technologies, text generation, and audio and video forgeries (deepfakes). Results. The author emphasises that the accessibility and development of AI technologies significantly increase the possibilities for fraudsters to create personalised attacks and automated social engineering schemes. The victimological consequences of such a phenomenon are considered, including the increased vulnerability of broad segments of the population and the reduced effectiveness of traditional protective measures. The research is based on foreign scientific traditions reflecting advanced approaches to understanding the social and technical aspects of digital victimisation. Key areas for counteracting fraud are identified, including the development of anti-fraud systems, multi-level authentication, integration of educational materials into popular online platforms, and improvement of international legal regulation. Conclusions. The author concludes that in order to effectively reduce victimisation in the context of AI use, a comprehensive approach integrating technological innovation, increased digital literacy and development of legal protection mechanisms is required.
remote fraud, artificial intelligence, victimological analysis, digital victimisation, deepfake, social engineering, anti-fraud systems, machine learning, personalised attacks, digital security, international cooperation, cybercrime
1. Jagielski M., Carlini N., Berthelot D., Kurakin A., Papernot N. High Accuracy and High Fidelity Extraction of Neural Networks / Proceedings of the 29th USENIX Security Symposium (USENIX Security ’20). 2020. P. 1345–1362. https://doi.org/10.48550/arXiv.1909.01838
2. Chawki M. Navigating legal challenges of deepfakes in the American context: a call to action // Cogent Engineering. 2024. Vol. 11. No. 1. P. 2320971. https://doi.org/10.1080/23311916.2024.2320971
3. Tolosana R., Fierrez J., Vera-Rodriguez R., Morales A. DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection. 2020. 23 p. https://doi.org/10.48550/arXiv.2001.00179
4. Verdoliva L. Media Forensics and DeepFakes: An Overview // IEEE Journal of Selected Topics in Signal Processing. 2020. Vol. 14. Is. 5. P. 910–932. https://doi.org/10.1109/JSTSP.2020.3002101
5. Hadnagy C. Social Engineering: The Science of Human Hacking. 2nd ed. USA, Indianapolis : John Wiley & Sons, Inc., 2020. 322 p.
6. Stajano F., Wilson P. Understanding Scam Victims: Seven Principles for Systems Security // Communications of the ACM. 2019. Vol. 62, Is. 3. P. 70–75.
7. Wall D. S. How Big Data Feeds Big Crime // Current History. 2018. Vol. 795. No. 117. P. 29–34. https://doi.org/10.1525/curh.2018.117.795.29
8. Makarov V. V., Blatova T. A., Voroshilova E. Yu. Uskorennoe razvitie informacionnyh tehnologiy v period pandemii // Ekonomika i kachestvo sistem svyazi. 2021. № 2 (20). S. 12–19.
9. Paliy E. S. Viktimologicheskaya harakteristika lic pensionnogo vozrasta: postanovka problemy // Sudebnaya ekspertiza i issledovaniya. 2025. № 1. S. 115–123.
10. Es'kova L. K., Ryabchikov V. V. Novye prestupnye sposoby moshennichestva v period pandemii koronavirusnoy infekcii // Gumanitarnye, social'no-ekonomicheskie i obschestvennye nauki. 2020. № 12-2. S. 68–70. https: //doi.org/10.23672/c3413-0996-0433-v
11. Ivancov S. V. Prestupleniya, sovershaemye s ispol'zovaniem informacionno-telekommunikacionnyh setey: voprosy preduprezhdeniya // Kriminologicheskiy zhurnal. 2019. № 2. S. 35–39.
12. McGuire M., Dowling S. Cyber Crime: A Review of the Evidence : Research Report 75 : Summary of key findings and implications. London : Home Office Research Report, 2013. 29 p.
13. Yakovleva L. V. Sovremennye sposoby soversheniya distancionnogo moshennichestva // Vestnik Krasnodarskogo universiteta MVD Rossii. 2021. № 4 (54). S. 77–80.
14. Brenig C., Accorsi R., Müller G. Economic Analysis of Cryptocurrency Backed Money Laundering / European Journal of Information Systems. ECIS 2015 Completed Research Papers. Paper 20. 2015. https://doi.org/10.18151/7217279
15. Gercke M. Understanding Cybercrime: Phenomena, Challenges and Legal Response. Switzerland, Geneva : ITU: International Telecommunication Union, 2012. 356 p.
16. Cross C., Lee M. Exploring Fear of Crime for Those Targeted by Romance Fraud // Victims & Offenders. 2022. Vol. 17. No. 5. P. 735–755. https://doi.org/10.1080/15564886.2021.2018080
17. Baym N. K. Personal Connections in the Digital Age. 2nd ed. UK, Cambridge : Polity, 2015. 240 p.
18. Leukfeldt E. R., Roks R. Cybercrimes on the Streets of the Netherlands? An Exploration of the Intersection of Cybercrimes and Street Crimes // Deviant Behavior. 2021. Vol. 42. No. 11. P. 1458–1469. https://doi.org/10.1080/01639625.2020.1755587
19. Floridi L. What Is Data Ethics? // Philosophical Transactions A. 2016. Vol. 374 (2083). https://doi.org/1098/rsta.2016.0112
20. Lustin V. I. Distancionnye moshennichestva // Zakon i vlast'. 2023. № 5. C. 67–74.



